基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To address the problem of using fixed feature and single apparent model which is difficult to adapt to the complex scenarios, a Kernelized correlation filter target tracking algorithm based on online saliency feature selection and fusion is proposed. It combined the correlation filter tracking framework and the salient feature model of the target. In the tracking process, the maximum Kernel correlation filter response values of different feature models were calculated respectively, and the response weights were dynamically set according to the saliency of different features. According to the filter response value, the final target position was obtained, which improves the target positioning accuracy. The target model was dynamically updated in an online manner based on the feature saliency measurement results. The experimental results show that the proposed method can effectively utilize the distinctive feature fusion to improve the tracking effect in complex environments.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
多路平衡型矩阵Bloom Filter
海量数据存储
BloomFilter
拆分BloomFilter
多路平衡型矩阵BloomFilter
处理多介质界面的改进型 Front Tracking 方法
界面拓扑结构
Front Tracking 方法
界面捕捉
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Kernelized Correlation Filter Target Tracking Algorithm Based on Saliency Feature Selection
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 KERNEL correlation filter FEATURE selection Patch-based target TRACKING SALIENCY detection
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 176-178
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
KERNEL
correlation
filter
FEATURE
selection
Patch-based
target
TRACKING
SALIENCY
detection
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导