基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The present study is to improve the volume flow rate of an axial fan through optimizing the blade shape under the demand for a specified static pressure. Fourteen design variables were selected to control the blade camber lines and the stacking line and the values of these variables were determined by using the experimental design method of the Latin Hypercube Sampling (LHS) to generate forty designs. The optimization was carried out using the genetic algorithm (GA) coupled with the artificial neural network (ANN) to increase the volume flow rate of the axial fan under the constraint of a specific motor power and a required static pressure. Differences in the aerodynamic performance and the flow characteristics between the original model and the optimal model were analyzed in detail. The results showed that the volume flow rate of the optimal model increased by 33%. The chord length, the installation angle and the cascade turning angle changed considerably. The forward leaned blade was beneficial to improve the volume flow rate of the axial fan. The axial velocity distribution and the static pressure distribution on the blade surface were improved after optimization.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Volume Flow Rate Optimization of an Axial Fan by Artificial Neural Network and Genetic Algorithm
来源期刊 流体动力学(英文) 学科 医学
关键词 AXIAL FAN VOLUME Flow Rate GENETIC Algorithm Artificial NEURAL Network
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 207-223
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AXIAL
FAN
VOLUME
Flow
Rate
GENETIC
Algorithm
Artificial
NEURAL
Network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
流体动力学(英文)
季刊
2165-3852
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
302
总下载数(次)
0
总被引数(次)
0
论文1v1指导