基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Residual useful life(RUL)prediction is a key issue for improving efficiency of aircraft engines and reducing their maintenance cost.Owing to various failure mechanism and operating environment,the application of classical models in RUL prediction of aircraft engines is fairly difficult.In this study,a novel RUL prognostics method based on using ensemble recurrent neural network to process massive sensor data is proposed.First of all,sensor data obtained from the aircraft engines are preprocessed to eliminate singular values,reduce random fluctuation and preserve degradation trend of the raw sensor data.Secondly,three kinds of recurrent neural networks(RNN),including ordinary RNN,long shortterm memory(LSTM),and gated recurrent unit(GRU),are individually constructed.Thirdly,ensemble learning mechanism is designed to merge the above RNNs for producing a more accurate RUL prediction.The effectiveness of the proposed method is validated using two characteristically different turbofan engine datasets.Experimental results show a competitive performance of the proposed method in comparison with typical methods reported in literatures.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Ensemble Recurrent Neural Network-Based Residual Useful Life Prognostics of Aircraft Engines
来源期刊 结构耐久性与健康监测(英文) 学科 工学
关键词 Aircraft engines RESIDUAL useful LIFE prediction HEALTH monitoring NEURAL networks ENSEMBLE learning
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 317-329
页数 13页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Aircraft
engines
RESIDUAL
useful
LIFE
prediction
HEALTH
monitoring
NEURAL
networks
ENSEMBLE
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
结构耐久性与健康监测(英文)
季刊
1930-2983
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
39
总下载数(次)
0
论文1v1指导