基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Biological Network Modeling Based on Hill Function and Hybrid Evolutionary Algorithm
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Gene REGULATORY network HILL FUNCTION GREY WOLF optimization Hybrid EVOLUTIONARY algorithm Ordinary differential equation
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 192-194
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Gene
REGULATORY
network
HILL
FUNCTION
GREY
WOLF
optimization
Hybrid
EVOLUTIONARY
algorithm
Ordinary
differential
equation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导