作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To address the problem that existing bipartite secret sharing scheme is short of dynamic characteristic, and to solve the problem that each participant can only use secret share once, this paper proposed a bipartite (n1+n2, m1+m2)-threshold multi-secret sharing scheme which combined cryptography and hypersphere geometry. In this scheme, we introduced a bivariate function and a coordinate function over finite field Zp to calculate the derived points of secret share, which can reconstruct the shared secrets by producing the intersection point of hypernormal plane and normal line on the hypertangent plane. At the initial stage the secret dealer distributes to each participant a secret share that can be kept secret based on the intractability of discrete logarithm problem and need not be changed with updating the shared secrets.Each cooperative participant only needs to submit a derived point calculated from the secret share without exposing this secret share during the process of reconstructing the shared secret. Analyses indicate that the proposed scheme is not only sound and secure because of hypersphere geometric properties and the difficulty of discrete logarithm problem, but also efficient because of its well dynamic behavior and the invariant secret share. Therefore, this bipartite threshold multi-secret sharing scheme is easy to implement and is applicable in practical settings.
推荐文章
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
基于Multi-Agent 的主动式ESS设计
智能体
主管支持系统
主动式
Multi-Agent在工控系统中的应用研究
Agent
Multi-Agent
现场总线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Bipartite Threshold Multi-Secret Sharing Scheme Based on Hypersphere
来源期刊 美国计算数学期刊(英文) 学科 工学
关键词 BIPARTITE THRESHOLD Multi-Secret SHARING HYPERSPHERE Hypernormal PLANE Hypertangent PLANE
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 207-220
页数 14页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BIPARTITE
THRESHOLD
Multi-Secret
SHARING
HYPERSPHERE
Hypernormal
PLANE
Hypertangent
PLANE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导