基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
煤矿采空区的CO2浓度对煤矿的安全生产有重大影响,其浓度的高低可以导致火灾的发生和潜在的CO2中毒事件,严重危害煤矿工人的生命安全.若能够实时预测煤矿采空区的CO2浓度,将会大大保障煤矿的安全生产.将自适应粒子群-极限学习机算法(SAPSO-ELM)应用于煤矿CO2浓度预测,具有创新性.通过仿真试验表明,可实现±0.04%的误差,可以应用于实际的煤矿CO2浓度预测.
推荐文章
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
改进粒子群优化的极限学习机软测量建模方法
软测量建模
极限学习机
粒子群优化算法
自适应权重
基于自适应遗忘因子极限学习机的高炉煤气预测
高炉煤气
在线预测
极限学习机
遗忘因子
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测
极限学习机
混沌纵横交叉
粒子群算法
预测精度
短期负荷预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应粒子群-极限学习机的煤矿CO2浓度预测
来源期刊 新一代信息技术 学科
关键词 煤矿 CO2浓度 SAPSO-ELM 预测 优化
年,卷(期) 2019,(10) 所属期刊栏目
研究方向 页码范围 18-23
页数 6页 分类号
字数 2526字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐宏 山东外事翻译职业学院信息与控制工程学院 3 0 0.0 0.0
2 王培进 山东外事翻译职业学院信息与控制工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (25)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(9)
  • 参考文献(2)
  • 二级参考文献(7)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(5)
  • 参考文献(0)
  • 二级参考文献(5)
2019(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
煤矿
CO2浓度
SAPSO-ELM
预测
优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
新一代信息技术
半月刊
2096-6091
10-1581/TP
北京市海淀区玉渊潭南路普惠南里13号楼
chi
出版文献量(篇)
639
总下载数(次)
4
论文1v1指导