基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Northern Guinea Savanna of Nigeria soils are continuously and intensively cultivated, resulting in soil quality degradation, carbon stock depletion, accelerated soil erosion and soil nutrient depletion. Effects of land use change on soil carbon stocks (SOC) are of concern regarding greenhouse gas emissions mitigation and sustainable crop production, because there is a need for food sufficiency while conserving the environment. Also, managing soils under intensive use and restoring degraded soils are top priorities for a sustained agronomic production while conserving soil and water resources. Hence, this study;“Tillage, Desmodium intortum, fertilizer rates for carbon stock, soil quality and grain yield in Northern Guinea Savanna” is aimed at devising possible mitigating measures for soil quality degradation, carbon stock depletion and impoverished crop yields using Zea mays as test crop. The study was a Randomized Complete Block Design (RCBD) in split-split plot arrangement with four replicates. The four main tillage and Desmodium intortum combination treatments were: 1) Maize −without Desmodium + Conventional tillage (MC), 2) Maize + Desmodium live-mulch incorporated and relayed + Conservation tillage (MDIC), 3) Maize + Desmodium in no-tillage system (MDNT), 4) Maize + Desmodium in strip tillage (MDST). The main treatment plots were each divided to accommodate four (4) rates of N (60, 80, 100 and 120 kg·ha−1) as sub plots, while the N rate plots were further divided to accommodate three (3) rates of P (6.6, 13.2, and 26.4 kg·ha−1) as sub-subplots. Findings support that Desmodium intercrops with Maize treatments (MDIC, MDNT, and MDST) resulted in increased organic carbon contents in 2013, with MDNT resulting in significantly higher organic carbon content (7.37 g·kg−1 in 2012 and 8.37 g·kg−1 in 2013) than the other treatments. Also, zero tillage practice (MDNT) sequestered significantly higher carbon stock (18.06 t C ha−1), followed by minimum tillage (MDIC) that sequest
推荐文章
Dynamics of soil organic carbon following land-use change: insights from stable C-isotope analysis i
C3 photosynthesis
C4 photosynthesis
Land-use change
Stable carbon isotopes
Black soil of Northeast China
Effects of mineral-organic fertilizer on the biomass of green Chinese cabbage and potential carbon s
Potassic rock
Carbonate
Karst
Ion chromatograph
Carbon sequestration
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Tillage, <i>Desmodium intortum</i>, Fertilizer Rates for Carbon Stock, Soil Quality and Grain Yield in Northern Guinea Savanna of Nigeria
来源期刊 美国气候变化期刊(英文) 学科 医学
关键词 Carbon STOCK TILLAGE Soil Quality Grain Yield Climate Change MITIGATION
年,卷(期) mgqhbhqkyw,(2) 所属期刊栏目
研究方向 页码范围 325-341
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Carbon
STOCK
TILLAGE
Soil
Quality
Grain
Yield
Climate
Change
MITIGATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国气候变化期刊(英文)
季刊
2167-9495
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
95
总下载数(次)
0
论文1v1指导