基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
遥感图像场景分类在地理空间对象检测、自然灾害检测、地理图像检索、环境监测等方面具有广泛的应用前景,引起了人们的广泛关注.文章改进了传统的深度卷积神经网络(DC-NN),将其应用于遥感图像场景分类研究,提出了一种改进后的7层网络结构,在激活函数的选择上,针对神经元通过Relu进行激活容易激活失败的情况,采用PRelu函数替代Relu;针对传统的深度学习方法不能融合多种细粒度深度学习特征的问题,采用分层特征融合的方法,通过实验对比,将第四个卷积层、池化层和最后一个全连接层提取到的特征进行串联融合,得到一种更加有效的深度特征.与传统深度学习方法相比,文章所提方法分类准确率提高了8.81%.实验结果表明,该方法在准确率、Kappa系数上均有良好表现,取得了良好的分类效果.
推荐文章
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的遥感图像场景分类
来源期刊 太原师范学院学报(自然科学版) 学科 工学
关键词 深度卷积神经网络 遥感图像 特征融合 PRelu
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 57-62
页数 6页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (58)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度卷积神经网络
遥感图像
特征融合
PRelu
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太原师范学院学报(自然科学版)
季刊
1672-2027
14-1304/N
大16开
山西省太原市
2002
chi
出版文献量(篇)
2334
总下载数(次)
5
总被引数(次)
6383
论文1v1指导