基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
High-density street-level reliable landmarks are one of the important foundations for street-level geolocation.However,the existing methods cannot obtain enough street-level landmarks in a short period of time.In this paper,a street-level landmarks acquisition method based on SVM(Support Vector Machine)classifiers is proposed.Firstly,the port detection results of IPs with known services are vectorized,and the vectorization results are used as an input of the SVM training.Then,the kernel function and penalty factor are adjusted for SVM classifiers training,and the optimal SVM classifiers are obtained.After that,the classifier sequence is constructed,and the IPs with unknown service are classified using the sequence.Finally,according to the domain name corresponding to the IP,the relationship between the classified server IP and organization name is established.The experimental results in Guangzhou and Wuhan city in China show that the proposed method can be as a supplement to existing typical methods since the number of obtained street-level landmarks is increased substantially,and the median geolocation error using evaluated landmarks is reduced by about 2 km.
推荐文章
界面捕捉中耦合Level-set与VOF算法
界面捕捉
耦合算法
Level-set
VOF
Level Set方法在雷达图像分割中的应用
水平集
Fast Marching方法
雷达图像分割
电场力模型
英国剑桥A level高中物理实验教学模式浅析
A level课程
高中物理
教学模式
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Street-Level Landmarks Acquisition Based on SVM Classifiers
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 Landmarks ACQUISITION SVM street-level IP GEOLOCATION
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 591-606
页数 16页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Landmarks
ACQUISITION
SVM
street-level
IP
GEOLOCATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导