基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Accurately finding the region of interest is a very vital step for segmenting organs in medical image processing.We propose a novel approach of automatically identifying region of interest in Computed Tomography Image(CT)images based on temporal and spatial data.Our method is a 3 stages approach,1)We extract organ features from the CT images by adopting the Hounsfield filter.2)We use these filtered features and introduce our novel approach of selecting observable feature candidates by calculating contours’area and automatically detect a seed point.3)We use a novel approach to track the growing region changes across the CT image sequence in detecting region of interest,given a seed point as our input.We used quantitative and qualitative analysis to measure the accuracy against the given ground truth and our results presented a better performance than other generic approaches for automatic region of interest detection of organs in abdominal CT images.With the results presented in this research work,our proposed novel sequence approach method has been proven to be superior in terms of accuracy,automation and robustness.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Novel Approach for Automatic Region of Interest and Seed Point Detection in CT Images Based on Temporal and Spatial Data
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 COMPUTED TOMOGRAPHY IMAGE continuously adaptive MEAN-SHIFT hounsfield particle-size distribution
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 669-686
页数 18页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
COMPUTED
TOMOGRAPHY
IMAGE
continuously
adaptive
MEAN-SHIFT
hounsfield
particle-size
distribution
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导