基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于物联网智能抄表技术获取的准确的居民日用气数据,采用机器学习方法实现居民日用气量的预测与影响因素评价.在采用LSTM模型对居民日用气量进行预测时,分别进行无特征预测(在预测过程中,不添加特征值)、特征预测,特征预测的精度比较高.在对居民日用气量的影响因素进行评价时,采用XGBoost模型,主要考虑小区外部特征(地理位置、物业费价格、容积率、房价、建造时间、绿化率、交通情况、教育特征)的影响,地理位置、物业费价格、容积率、房价、建造时间、绿化率的重要性靠前,其他小区外部特征的重要性不明显.
推荐文章
页岩含气量的影响因素及预测
页岩气
含气量
影响因素
预测方法
基于机器学习的大学体育成绩预测与分析
体育训练
机器学习算法
预测模型
粒子群算法
基于气温预测燃气日用气量的智慧平台建设
燃气预警指挥智慧平台
气温
燃气日用气量预测
基于机器学习的大学生自杀风险预测与分析
机器学习
大学生自杀风险
预测方法
结果分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的日用气量预测及影响因素分析
来源期刊 煤气与热力 学科 工学
关键词 居民日用气量预测 机器学习 影响因素分析 LSTM模型 XGBoost模型
年,卷(期) 2019,(9) 所属期刊栏目 燃气输配与储运
研究方向 页码范围 29-32
页数 4页 分类号 TU996.3
字数 3645字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨谈 10 36 4.0 5.0
2 黄建安 1 0 0.0 0.0
3 金亚东 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (5)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(7)
  • 参考文献(3)
  • 二级参考文献(4)
2016(9)
  • 参考文献(3)
  • 二级参考文献(6)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
居民日用气量预测
机器学习
影响因素分析
LSTM模型
XGBoost模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤气与热力
月刊
1000-4416
12-1101/TU
大16开
天津市和平区新兴路52号都市花园大厦21层
6-36
1978
chi
出版文献量(篇)
5813
总下载数(次)
21
总被引数(次)
33292
论文1v1指导