The study of the grain-size distribution of gravels is always an important and challenging issue in stratigraphy and morphology, especially in the field of automated measurement. It largely reduces many manual processes and time consumption. Precise segmentation method plays a very important role in it. In this study, a digital image method using an improved normalized cuts algorithm is proposed for auto-segmentation of gravel image. It added grain-size estimation, and used the feature vector based on color. It has made great improvements in many respects, especially in accuracy of edge segmentation and automation. Compared with manual measurement methods and other image processing methods, the method studied in this paper is an efficient method for precisely segmenting gravel images.