基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The nonlinear activation functions in the deep CNN(Convolutional Neural Network)based on fluid dynamics are presented.We propose two types of activation functions by applying the so-called parametric softsign to the negative region.We use significantly the well-known TensorFlow as the deep learning framework.The CNN architecture consists of three convolutional layers with the max-pooling and one fullyconnected softmax layer.The CNN approaches are applied to three benchmark datasets,namely,MNIST,CIFAR-10,and CIFAR-100.Numerical results demonstrate the workability and the validity of the present approach through comparison with other numerical performances.
推荐文章
Soil organic carbon dynamics study bias deduced from isotopic fractionation in corn plant
Bias of SOC dynamics study
Isotopic fractionation in corn
Isotope mass balance equation
Bias range
Diagenetic evolution of clastic reservoirs and its records in fine subsection: significance and appl
Tight sandstone reservoirs
Diagenetic evolution
Fine subsection
Significance
Fluid properties and sources of Sixiangchang carbonateassociated mercury deposit, southwest China
Trace elements
Carbon and oxygen isotopes
Sulfur isotope
Calcite and dolomite
Youjiang Basin
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Nonlinear Activation Functions in CNN Based on Fluid Dynamics and Its Applications
来源期刊 工程与科学中的计算机建模(英文) 学科 数学
关键词 DEEP learning CNN ACTIVATION function FLUID DYNAMICS MNIST CIFAR-10 CIFAR-100.
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 1-14
页数 14页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DEEP
learning
CNN
ACTIVATION
function
FLUID
DYNAMICS
MNIST
CIFAR-10
CIFAR-100.
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程与科学中的计算机建模(英文)
月刊
1526-1492
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
299
总下载数(次)
1
总被引数(次)
0
论文1v1指导