基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Systems biology requires the development of algorithms that use omics data to infer interaction networks among biomolecules working within an organism. One major type of evolutionary algorithm, genetic programming (GP), is useful for its high heuristic ability as a search method for obtaining suitable solutions expressed as tree structures. However, because GP determines the values of parameters such as coefficients by random values, it is difficult to apply in the inference of state equations that describe oscillatory biochemical reaction systems with high nonlinearity. Accordingly, in this study, we propose a new GP procedure called “k-step GP” intended for inferring the state equations of oscillatory biochemical reaction systems. The k-step GP procedure consists of two algorithms: 1) Parameter optimization using the modified Powell method—after genetic operations such as crossover and mutation, the values of parameters such as coefficients are optimized by applying the modified Powell method with secondary convergence. 2) GP using divided learning data—to improve the inference efficiency, imposes perturbations through the addition of learning data at various intervals and adaptations to these changes result in state equations with higher fitness. We are confident that k-step GP is an algorithm that is particularly well suited to inferring state equations for oscillatory biochemical reaction systems and contributes to solving inverse problems in systems biology.
推荐文章
LT码译码算法的研究
LT码
喷泉码
MPGE
译码算法
基于LT码数据分发协议性能分析
LT码
分发协议
无线传感网络
LT-B转基因烟草植株的建立
大肠杆菌热不稳定肠毒素B亚单位
转基因烟草
植物疫苗
根瘤农杆菌
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Inference of General Mass Action-Based State Equations for Oscillatory Biochemical Reaction Systems Using <i>k</i>-Step Genetic Programming
来源期刊 应用数学(英文) 学科 医学
关键词 SYSTEMS Biology Genetic Programming Inverse Problems OSCILLATORY BIOCHEMICAL Reaction SYSTEMS GMA-Based State Equations
年,卷(期) 2019,(8) 所属期刊栏目
研究方向 页码范围 627-645
页数 19页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SYSTEMS
Biology
Genetic
Programming
Inverse
Problems
OSCILLATORY
BIOCHEMICAL
Reaction
SYSTEMS
GMA-Based
State
Equations
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导