作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Aiming at the current process of artistic creation and animation creation, there are a lot of repeated manual operations in the process of conversion from sketch to the stylized image. This paper presented a solution based on a deep learning framework to realize image generation and style transfer. The method first used the conditional generation to resist the network, optimizes the loss function of the training mapping relationship, and generated the actual image from the input sketch. Then, by defining and optimizing the perceptual loss function of the style transfer model, the style features are extracted from the image, thereby forming the actual The conversion between images and stylized art images. Experiments show that this method can greatly reduce the work of coloring and converting with different artistic effects, and achieve the purpose of transforming simple stick figures into actual object images.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Research on Image Generation and Style Transfer Algorithm Based on Deep Learning
来源期刊 应用科学(英文) 学科 工学
关键词 DEEP LEARNING IMAGE GENERATION STYLE TRANSFER
年,卷(期) 2019,(8) 所属期刊栏目
研究方向 页码范围 661-672
页数 12页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DEEP
LEARNING
IMAGE
GENERATION
STYLE
TRANSFER
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用科学(英文)
月刊
2165-3917
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
247
总下载数(次)
0
总被引数(次)
0
论文1v1指导