基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The recommendation system can effectively and quickly provide valuable information for users by filtering out massive useless data. User behavior modeling can extract all kinds of aggregated features over the heterogeneous behaviors to help recommendation. However, the existing user behavior modeling method cannot solve the cold-start problem caused by data sparse. Recent recommender systems which exploit reviews for learning representation can alleviate the above problem to a certain extent. Therefore, a user behavior modeling is proposed for recommendation task using attention neural network based on user reviews (AT-UBM). Firstly vanilla attention was used to sample reviews, and then CNN+Pooling method was applied to extract user behavior features. Finally the long-term behavior was combined with short-term behavior in feature spaces. Experimental results on real datasets show that the review-based user behavior model has better prediction accuracy and generalization capability.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Attention Neural Network for User Behavior Modeling
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 RECOMMENDATION system ATTENTION NEURAL network Behavior model CNN+Pooling
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 40-41
页数 2页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RECOMMENDATION
system
ATTENTION
NEURAL
network
Behavior
model
CNN+Pooling
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导