基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Copy-move offense is considerably used to conceal or hide several data in the digital image for specific aim, and onto this offense some portion of the genuine image is reduplicated and pasted in the same image. Therefore, Copy-Move forgery is a very significant problem and active research area to check the confirmation of the image. In this paper, a system for Copy Move Forgery detection is proposed. The proposed system is composed of two stages: one is called the detection stages and the second is called the refine detection stage. The detection stage is executed using Speeded-Up Robust Feature (SURF) and Binary Robust Invariant Scalable Keypoints (BRISK) for feature detection and in the refine detection stage, image registration using non-linear transformation is used to enhance detection efficiency. Initially, the genuine image is picked, and then both SURF and BRISK feature extractions are used in parallel to detect the interest keypoints. This gives an appropriate number of interest points and gives the assurance for finding the majority of the manipulated regions. RANSAC is employed to find the superior group of matches to differentiate the manipulated parts. Then, non-linear transformation between the best-matched sets from both extraction features is used as an optimization to get the best-matched set and detect the copied regions. A number of numerical experiments performed using many benchmark datasets such as, the CASIA v2.0, MICC-220, MICC-F600 and MICC-F2000 datasets. With the proposed algorithm, an overall average detection accuracy of 95.33% is obtained for evaluation carried out with the aforementioned databases. Forgery detection achieved True Positive Rate of 97.4% for tampered images with object translation, different degree of rotation and enlargement. Thus, results from different datasets have been set, proving that the proposed algorithm can individuate the altered areas, with high reliability and dealing with multiple cloning.
推荐文章
RHFM结合形态学滤波的数字图像Copy-Move篡改取证方法
信息安全
拷贝-移动篡改
攻击检测
数字取证
圆谐-傅里叶矩
形态学操作
基于Tamura纹理特征的Copy-Move图像篡改盲检测
Tamura纹理特征
盲检测
Copy-Move型篡改
字典排序
同幅数字图像中Copy-Move型篡改的盲检测
离散小波变换
复制-粘贴篡改
篡改检测
重叠块
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Copy-Move Forgeries Detection and Localization Using Two Levels of Keypoints Extraction
来源期刊 电脑和通信(英文) 学科 医学
关键词 COPY MOVE FORGERY DETECTION Keypoint Based Methods SURF BRISK Bi-Cubic Interpolation
年,卷(期) 2019,(9) 所属期刊栏目
研究方向 页码范围 1-18
页数 18页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
COPY
MOVE
FORGERY
DETECTION
Keypoint
Based
Methods
SURF
BRISK
Bi-Cubic
Interpolation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导