基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Image retrieval for food ingredients is important work,tremendously tiring,uninteresting,and expensive.Computer vision systems have extraordinary advancements in image retrieval with CNNs skills.But it is not feasible for small-size food datasets using convolutional neural networks directly.In this study,a novel image retrieval approach is presented for small and medium-scale food datasets,which both augments images utilizing image transformation techniques to enlarge the size of datasets,and promotes the average accuracy of food recognition with state-of-the-art deep learning technologies.First,typical image transformation techniques are used to augment food images.Then transfer learning technology based on deep learning is applied to extract image features.Finally,a food recognition algorithm is leveraged on extracted deepfeature vectors.The presented image-retrieval architecture is analyzed based on a smallscale food dataset which is composed of forty-one categories of food ingredients and one hundred pictures for each category.Extensive experimental results demonstrate the advantages of image-augmentation architecture for small and medium datasets using deep learning.The novel approach combines image augmentation,ResNet feature vectors,and SMO classification,and shows its superiority for food detection of small/medium-scale datasets with comprehensive experiments.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
基于Titan Image软件的QuickBird影像融合
Titan Image
QuickBird
影像融合
质量评价
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Image Augmentation-Based Food Recognition with Convolutional Neural Networks
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 IMAGE augmentation SMALL-SCALE DATASET DEEP FEATURE DEEP learning convolutional NEURAL network
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 297-313
页数 17页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
IMAGE
augmentation
SMALL-SCALE
DATASET
DEEP
FEATURE
DEEP
learning
convolutional
NEURAL
network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
论文1v1指导