基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的面板堆石坝渗流量监控模型难以精确反映渗流量的非线性变化规律,结合支持向量机和改进的粒子群算法,提出了AMPSO-SVM面板堆石坝渗流量监控模型.针对粒子群算法在SVM参数寻优过程中的不足,提出新的自适应粒子群优化算法(AMPSO),采用平均粒子间距对惯性权重进行非线性调整,算法后期在速度更新公式中加入突变扰动,使粒子群保持良好的种群多样性,有效地避免陷入局部最优和过早收敛等问题.在某面板堆石坝的实际应用表明,该AMPSO-SVM监控模型具有简便、高效、拟合与预测精度高等优势,在渗流量监控中具有一定工程应用价值.
推荐文章
组合型混凝土面板堆石坝应力应变特性分析
组合面板堆石坝
常规面板堆石坝
应力应变特性
有限元
面板堆石坝垂直缝破坏下三维渗流场有限元模拟
面板堆石坝
垂直缝
渗流
改进节点虚流量法
裂缝模型
高面板堆石坝建设进展
高面板堆石坝
发展背景
挑战
技术问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面板堆石坝渗流量AMPSO-SVM组合监控模型
来源期刊 三峡大学学报(自然科学版) 学科 工学
关键词 面板堆石坝 渗流量监测 支持向量机 自适应粒子群算法 监控模型
年,卷(期) 2019,(6) 所属期刊栏目 水利工程
研究方向 页码范围 1-6
页数 6页 分类号 TV698
字数 4793字 语种 中文
DOI 10.13393/j.cnki.issn.1672-948X.2019.06.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑东健 河海大学水文水资源与水利工程科学国家重点实验室 115 637 13.0 19.0
10 晏周 河海大学水文水资源与水利工程科学国家重点实验室 2 0 0.0 0.0
19 张海龙 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (133)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
面板堆石坝
渗流量监测
支持向量机
自适应粒子群算法
监控模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
三峡大学学报(自然科学版)
双月刊
1672-948X
42-1735/TV
大16开
湖北省宜昌市大学路8号
1979
chi
出版文献量(篇)
3272
总下载数(次)
3
总被引数(次)
16186
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导