基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了基于可变形部件模型(deformable part model,DPM)的高分二号(GaoFen-2,GF2)遥感影像船只检测方法,并与区域卷积网络(regional convolutional neural network,R-CNN)进行比较.先将遥感影像分段以获得船只的粗略感兴趣区域(regions of interest,ROI),然后在ROI内计算方向梯度直方图(histogram of oriented gradients,HOG)和卷积特征,再分别由DPM和R-CNN采用HOG和卷积特征.为测试R-CNN的最佳性能,将具有5个卷积层(ZF网)和具有13个卷积层(VGG网)的网络应用于船只检测.使用8张GF2遥感影像的3 523艘船只的实验结果表明,DPM和R-CNN都能以高召回率和正确率检测水中的船只,但对于聚集船只而言,DPM的效果优于R-CNN.基于HOG+DPM,ZF网和VGG网的方法平均精度分别为95.031%,93.282%和93.683%.
推荐文章
基于Faster R-CNN的显著性目标检测方法
视觉显著性
目标检测
元胞自动机
超像素分割
基于Faster R-CNN的蓝莓冠层果实检测识别分析
蓝莓
冠层果实
FasterR-CNN
精准识别
产量预估
不同成熟度
依据Faster R-CNN的活体植株叶片气孔检测方法
气孔检测
深度学习
Faster R-CNN
气孔密度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DPM和R-CNN的高分二号遥感影像船只检测方法
来源期刊 系统工程与电子技术 学科 地球科学
关键词 船只检测 可变形部件模型 区域卷积网络 高分二号遥感影像
年,卷(期) 2019,(3) 所属期刊栏目 电子技术
研究方向 页码范围 509-514
页数 6页 分类号 P20
字数 5179字 语种 中文
DOI 10.3969/j.issn.1001-506X.2019.03.07
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张绍明 同济大学测绘与地理信息学院 29 180 9.0 11.0
2 楼立志 同济大学测绘与地理信息学院 33 312 9.0 17.0
3 张涛 同济大学测绘与地理信息学院 77 418 8.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (129)
参考文献  (20)
节点文献
引证文献  (2)
同被引文献  (4)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(3)
  • 参考文献(2)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(9)
  • 参考文献(1)
  • 二级参考文献(8)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(10)
  • 参考文献(1)
  • 二级参考文献(9)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(5)
  • 参考文献(5)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
船只检测
可变形部件模型
区域卷积网络
高分二号遥感影像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
系统工程与电子技术
月刊
1001-506X
11-2422/TN
16开
北京142信箱32分箱
82-269
1979
chi
出版文献量(篇)
10512
总下载数(次)
24
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导