基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Part of speech (POS) tagging determines the attributes of each word, and it is the fundamental work in machine translation, speech recognition, information retrieval and other fields. For Tibetan part-of-speech (TPOS) tagging, a tagging method is proposed based on bidirectional long short-term memory with conditional random field model (BiLSTM_CRF). Firstly, the designed TOPS tagging set and manual tagging corpus were used to get word vectors by embedding Tibetan words and corresponding TPOS tags in continuous bag-of-words (CBOW) model. Secondly, the word vectors were input into the BiLSTM_CRF model. To obtain the predictive score matrix, this model using the past input features and future input feature information respectively learned by forward long short-term memory (LSTM) and backward LSTM performs non-linear operations on the softmax layer. The prediction score matrix was input into the CRF model to judge the threshold value and calculate the sequence score error. Lastly, a Tibetan part of speech tagging model was got based on the BiLSTM_CRF model. The experimental results indicate that the accuracy of TPOS tagging model based on the BiLSTM_CRF model can reach 92.7%.
推荐文章
基于BiLSTM_CRF模型的藏文分词方法
文本分词
长短时计忆网络
深度神经网络
词向量
民族语言
基于BILSTM_CRF的知识图谱实体抽取方法
知识图谱
实体抽取
神经网络
词向量
BILSTM_CRF模型
基于BiLSTM-CRF的商情实体识别模型
条件随机场
双向长短时记忆网络
语言模型
命名实体识别
深度学习
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 TPOS Tagging Method Based on BiLSTM_CRF Model
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 DEEP LEARNING WORD EMBEDDING MODEL TIBETAN part-of-speech
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 501-503
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DEEP
LEARNING
WORD
EMBEDDING
MODEL
TIBETAN
part-of-speech
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导