基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
藏文分词是实现藏文语音合成和藏文语音识别的关键技术之一.提出一种基于双向长短时记忆网络加条件随机场(bidirectional long-short-term memory with conditional random field model,BiLSTM_CRF)模型的藏文分词方法.对手工分词的语料经过词向量训练后输入到双向长短时记忆网络(bidirectional long-short-term memory,BiL-STM)中,将前向长短时记忆网络(long-short-term memory,LSTM)和后向LSTM学习到的过去输入特征和未来输入特征相加,传入到线性层和softmax层进行非线性操作得到粗预测信息,再利用条件随机场(conditional random field,CRF)模型进行约束性修正,得到一个利用词向量和CRF模型优化的藏文分词模型.实验结果表明,基于BiLSTM_CRF模型的藏文分词方法可取得较好的分词效果,分词准确率可达94.33%,召回率为93.89%,F值为94.11%.
推荐文章
基于音节标注的藏文自动分词研究
藏文
分词
序列标注
最大熵
条件随机场
最大间隔Markov网络模型
基于层次特征的藏文人名识别研究
人名识别
层次特征
藏文
条件随机场
基于BILSTM_CRF的知识图谱实体抽取方法
知识图谱
实体抽取
神经网络
词向量
BILSTM_CRF模型
基于音节标注的藏文自动分词研究
藏文
分词
序列标注
最大熵
条件随机场
最大间隔Markov网络模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BiLSTM_CRF模型的藏文分词方法
来源期刊 重庆邮电大学学报(自然科学版) 学科 工学
关键词 文本分词 长短时计忆网络 深度神经网络 词向量 民族语言
年,卷(期) 2020,(4) 所属期刊栏目 计算机与自动化
研究方向 页码范围 648-654
页数 7页 分类号 TP391.1|TN912.33
字数 4631字 语种 中文
DOI 10.3979/j.issn.1673-825X.2020.04.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨鸿武 西北师范大学物理与电子工程学院 55 308 11.0 14.0
4 王宏渊 西北师范大学物理与电子工程学院 7 27 3.0 5.0
5 王莉莉 西北师范大学物理与电子工程学院 2 1 1.0 1.0
12 白玛曲珍 西北师范大学物理与电子工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (56)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(13)
  • 参考文献(0)
  • 二级参考文献(13)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分词
长短时计忆网络
深度神经网络
词向量
民族语言
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆邮电大学学报(自然科学版)
双月刊
1673-825X
50-1181/N
大16开
重庆南岸区
78-77
1988
chi
出版文献量(篇)
3229
总下载数(次)
12
总被引数(次)
19476
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导