作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we have presented a new approach to the dynamics of hypothetical primary particles, moving at speeds greater than the speed of light in a vacuum within their flat spacetime, which is why we understood the reason why they have not been detected so far. By introducing a new factor, we have linked the space-time coordinates of primary particles, within different inertial frames of reference. We have shown that transformations of coordinates for primary particles with respect to different inertial frames of reference, based on this factor, constitute the Lorentz transformations. Utilizing this factor, we have set the foundations of primary particle dynamics. The results obtained for the dynamic properties of these particles are in accordance with the fundamental laws of physics, and we expect them to be experimentally verifiable. Likewise, due to their dynamic properties, we have concluded that the Big Bang could have occurred during a mutual collision of the primary particles, with a sudden speed decrease of some of these particles to a speed slightly greater than the speed of light in a vacuum, which would release an enormous amount of energy. Created in such manner, our Universe would possess a limit on the maximum speed of energy-mass transfer, the speed of light in a vacuum, which we will show after introducing the dynamic properties of these particles. Similarly, we have concluded that the creation of other universes, possessing a different maximum speed of energy-mass transfer, occurred during the collision of these particles as well, only by means of deceleration of some of these particles to a speed slightly greater than the maximum speed of energy-mass transfer in that particular universe.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Hypothesis of Primary Particles and the Creation of the Big Bang and Other Universes
来源期刊 现代物理(英文) 学科 物理学
关键词 Big Bang Flat SPACETIME LORENTZ TRANSFORMATIONS
年,卷(期) xdwlyw_2019,(13) 所属期刊栏目
研究方向 页码范围 1532-1547
页数 16页 分类号 O41
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Big
Bang
Flat
SPACETIME
LORENTZ
TRANSFORMATIONS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代物理(英文)
月刊
2153-1196
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1826
总下载数(次)
0
论文1v1指导