基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine(SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Identification of bacterial fossils in marine source rocks in South China
South China
Excellent marine source rocks
Bacterial fossil
Sedimentary environment
mode decomposition-support vector machine method
海洋表面温度
经验模态分解
支持向量机
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine
来源期刊 现代电力系统与清洁能源学报(英文) 学科 工学
关键词 Wind TURBINE Bearing Fault diagnosis Stochastic SUBSPACE identification(SSI) Multi-kernel support vector machine(MSVM)
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 350-356
页数 7页 分类号 TM614
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Wind
TURBINE
Bearing
Fault
diagnosis
Stochastic
SUBSPACE
identification(SSI)
Multi-kernel
support
vector
machine(MSVM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电力系统与清洁能源学报(英文)
双月刊
2196-5625
32-1884/TK
No. 19 Chengxin Aven
出版文献量(篇)
386
总下载数(次)
0
总被引数(次)
0
论文1v1指导