基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
根据用户的历史评分数据为用户提供推荐的商品列表,是目前推荐系统研究的主流.研究者发现,随着用户参与度的不断提高,将反映用户偏好的评论文本与评分数据结合,可以进一步提高推荐的质量.提出了基于潜在特征同步学习和偏好引导的商品推荐方法,将评论文本的主题与用户的“打分偏好”进行关联,同步学习用户评论文本的潜在主题、评分矩阵的用户潜在因子和商品潜在因子,并将潜在主题作为用户个人偏好引导来约束推荐方法对商品的预测打分.该方法对推荐质量的优化主要体现在两个方面:一是在评论文本的潜在主题和评分数据的两种潜在因子之间建立映射关系,同步求解主题模型和矩阵分解模型;二是将从评论文本中学习得到的潜在主题作为用户对商品的个性偏好引入到矩阵分解中,进一步优化推荐方法.在来自Amazon网站的28组真实数据集上进行实验,以均方误差为评价指标,与已有的模型进行了对比分析.实验结果表明,该方法有效减少了推荐误差,与已有的TopicMF方法相比,均方误差在数据子集上最大减少了3.32%,平均减少了0.92%.
推荐文章
一种用户偏好的美学图像推荐方法
深度卷积神经网络
美学规则
用户偏好
基于用户潜在时效偏好的推荐算法
推荐系统
时效偏好
概率主题模型
隐马尔可夫模型
基于潜在标签挖掘和细粒度偏好的个性化标签推荐
个性化标签推荐
潜在标签挖掘
贝叶斯个性化排序
成对交互张量分解
一种基于偏好的个性化标签推荐系统
标签
用户模型
模糊度
个性化推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种潜在特征同步学习和偏好引导的推荐方法
来源期刊 软件学报 学科 工学
关键词 评论文本 评分数据 推荐系统 潜在主题 潜在因子
年,卷(期) 2019,(11) 所属期刊栏目 数据库技术
研究方向 页码范围 3382-3396
页数 15页 分类号 TP311
字数 11426字 语种 中文
DOI 10.13328/j.cnki.jos.005542
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李琳 武汉理工大学计算机科学与技术学院 41 202 9.0 13.0
2 解庆 武汉理工大学计算机科学与技术学院 8 3 1.0 1.0
3 杨征路 南开大学计算机与控制工程学院 2 1 1.0 1.0
4 苏畅 武汉理工大学计算机科学与技术学院 3 29 2.0 3.0
5 朱阁 武汉理工大学计算机科学与技术学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (60)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(5)
  • 参考文献(2)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
评论文本
评分数据
推荐系统
潜在主题
潜在因子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家社会科学基金
英文译名:Philosophy and Social Science Foundation of China
官方网址:http://www.npopss-cn.gov.cn/
项目类型:重点项目
学科类型:马列·科社
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导