基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A new deep learning framework — the socalled Deep Forest (DF), proposed by Zhi-Hua Zhou andJi Feng [1,2]-can be regarded as one of the important events of 2017 in machine learning, although it was unjustly unnoticed by a large number of researchers.The DF combines several ensemble-based methods, including Random Forests (RFs) and Stacking, into a structure that is similar to a multi-layer neural network, but each layer in the DF contains RFs instead of neurons.All advantages of DF are dearly discussed in [1-3].In particular, DF is simple for training due to a very small number of hyper-parameters, it does not use backpropagation training and it outperforms many well-known methods, including deep neural networks, when there are only small-scale training data.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
李代数对的Atiyah class
李代数对
Atiyah class
李代数上同调
李代数模
李代数的扩张
李代数正合序列
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep Forest as a framework for a new class of machine-learning models
来源期刊 国家科学评论(英文版) 学科
关键词
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 186-187
页数 2页 分类号
字数 语种 英文
DOI 10.1093/nsr/nwy151
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
国家科学评论(英文版)
月刊
2095-5138
10-1088/N
大16开
北京市
80-671
2014
eng
出版文献量(篇)
773
总下载数(次)
0
总被引数(次)
431
论文1v1指导