摘要:
绿原酸(chlorogenic acid,CGA)是评价金银花品质的重要指标.为了实现金银花贮藏期间CGA含量变化的快速有效检测,该文采集了500个不同贮藏时间(0~20 d)的金银花高光谱图像,构建CGA含量的高光谱检测模型.为了提高模型性能,采用savizky-golay卷积平滑(SG),移动窗口平滑(moving average),标准正态变量(standard normal variable,SNV),基线校正(baseline correction,BC),多元散射校正(multiplicative scatter correction,MSC),正交信号校正(orthogonal signal correction,OSC)6种预处理方法并建立偏最小二乘回归(partial least squares regression,PLSR)模型,确定SNV方法为最佳预处理方法,其预测集的R2为0.9766,RMSE为0.2711%.为了简化校准模型,利用无信息变量消除(uninformative variable elimination,UVE),连续投影算法(successive projections algorithm,SPA),竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)以及UVE-CARS、UVE-SPA等方法对SNV预处理后的光谱提取特征波长.然后,分别基于全光谱数据和所选特征变量数据,建立线性偏最小二乘回归(PLSR)和非线性BP神经网络模型.结果表明:UVE-CARS算法可以有效地减少提取变量个数(共提取26个,仅占全光谱范围的3.2%),PLSR和BP模型的预测集R2分别为0.9746和0.9784,RMSE分别为0.2863%和0.2503%.非线性BP模型预测结果整体优于线性PLSR模型,在BP模型中,UVE-CARS-BP预测精度最高,预测集的R2和RMSE的值分别为0.9784,0.2503%.综上,基于高光谱成像技术建立的SNV-UVE-CARS-BP模型,可以实现金银花贮藏过程中CGA含量变化的快速无损预测.