原文服务方: 微电子学与计算机       
摘要:
针对并行卷积神经网络(PCNN)的参数过多,模型训练时间成本高的问题,本文提出了并行尺度裁切卷积神经网络(PSC-CNN).PSC-CNN算法是将并行卷积神经网络其中一路(Path A)的输入及该通路的特征提取层的输出通过Crop层裁切得到新的尺寸的图像供给另一路(Path B)网络作为输入.这样,Path A的输入图像在数据层经过一次随机裁剪,Path B则经过了两次裁剪操作,增加了输入数据的多样性,提升了模型的学习能力.算法以AlexNet为基础网络,分别设计了对应的PCNN及PSC-CNN模型,在数据集Caltech101、Caltech256上进行实验.实验结果表明,相较原始的PCNN,本文提出的改进算法有效的提升了分类准确度同时缩短了训练时间.
推荐文章
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 并行尺度裁切的深度卷积神经网络模型
来源期刊 微电子学与计算机 学科
关键词 并行卷积神经网络 识别 尺度裁切 特征提取 AlexNet
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 6-11
页数 6页 分类号 TP3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄友文 江西理工大学信息工程学院 15 31 3.0 5.0
2 方永平 江西理工大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (11)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
并行卷积神经网络
识别
尺度裁切
特征提取
AlexNet
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导