原文服务方: 计算机应用研究       
摘要:
卷积神经网络在进行图片处理时需要输入固定尺寸大小的图片,该限制会导致原图在缩放过程中损失大部分信息.另外,目前人脸检测算法多用单一结构网络进行特征提取,这就使得算法的泛化能力较弱.针对以上两个问题,提出了一种将级联卷积神经网络与空间金字塔池化相结合的人脸检测算法.该方法将三级卷积神经网络模型连接起来,其中三级神经网络模型之间各不相同,结构从简单到复杂,在不同层次的神经网络上提取不同的人脸特征并筛选图片,完成对图片中人脸区域的检测.同时,在每级网络层次中加入空间金字塔池化层,这种池化策略无须固定尺寸大小的输入,增加了模型输入的尺寸选择.在标准人脸数据集中,该方法相对于传统方法实现了模型的多尺度输入,提升了检测性能,并降低了检测人脸的时间.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于级联卷积神经网络的人脸检测算法
人脸检测
级联结构
神经网络
全卷积网络
无约束条件
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于选择性搜索和卷积神经网络的人脸检测
卷积神经网络
选择性搜索
人脸检测
Gabor核
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 尺度无关的级联卷积神经网络人脸检测算法
来源期刊 计算机应用研究 学科
关键词 级联卷积神经网络 空间金字塔池化 人脸检测
年,卷(期) 2019,(2) 所属期刊栏目 图形图像技术
研究方向 页码范围 593-597,605
页数 6页 分类号 TP183|TP301.6
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2017.08.0957
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周勇 中国矿业大学计算机学院 85 984 16.0 29.0
2 刘兵 中国矿业大学计算机学院 34 203 9.0 13.0
6 郑成浩 中国矿业大学计算机学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (552)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (10)
二级引证文献  (10)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(7)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(5)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
级联卷积神经网络
空间金字塔池化
人脸检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导