基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
生物特征识别系统必须拥有快速准确的分类能力.针对传统人脸活体检测方法的特征提取单一和基于深度学习的检测算法中的网络训练时间长、梯度容易消失以及过拟合等问题,提出一种新型人脸活体检测算法BM-CNN(based on mixnetwork-convolutional neural network).算法首先采用人脸分割技术和基于曲率滤波的图像增强技术对人脸图像进行预处理,然后使用优化卷积神经网络(convolutional neural network,CNN)对预处理图像进行特征提取与决策分类.对卷积神经网络,提出一种复合的并行卷积神经网络,CNN使用二均值池化策略,并综合批量归一化BN(batch normalization)方法和多类型非线性单元提高算法检测性能,通过双线并行的卷积神经网络对活体人脸进行检测.在NUAA数据库和CASIA数据库上对算法进行对比实验,实验结果显示该算法能对人脸图像进行准确的分类,并在样本数量和训练时间上有较大的提升.
推荐文章
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于BP神经网络的人脸检测AdaBoost算法
人脸检测
BP神经网络
AdaBoost
基于选择性搜索和卷积神经网络的人脸检测
卷积神经网络
选择性搜索
人脸检测
Gabor核
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用卷积神经网络的人脸活体检测算法研究
来源期刊 计算机科学与探索 学科 工学
关键词 生物特征识别 曲率滤波 并行卷积神经网络 二均值池化 批量归一化
年,卷(期) 2018,(10) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 1658-1670
页数 13页 分类号 TP391
字数 7161字 语种 中文
DOI 10.3778/j.issn.1673-9418.1801009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 龙敏 长沙理工大学计算机与通信工程学院 40 182 8.0 11.0
5 佟越洋 长沙理工大学计算机与通信工程学院 1 10 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (36)
参考文献  (11)
节点文献
引证文献  (10)
同被引文献  (32)
二级引证文献  (47)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(29)
  • 引证文献(5)
  • 二级引证文献(24)
2020(27)
  • 引证文献(4)
  • 二级引证文献(23)
研究主题发展历程
节点文献
生物特征识别
曲率滤波
并行卷积神经网络
二均值池化
批量归一化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导