基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决大部分基于深度学习的方法直接提取深度抽象特征,无法在速度与精度上取得均衡问题,该文将传统的级联框架与深度卷积神经网络结合,提出了一种新的基于级联的由浅至深的卷积神经网络人脸检测方法.首先通过融合全脸与部分人脸的全卷积神经网络置信图谱快速定位人脸候选区域,然后采用深度神经网络提取人脸鲁棒性特征,对候选区域进一步分类验证,并用联合回归的方法确定最终人脸位置,提高检测精确度.所提出的方法与一些代表性的算法对比和分析,在FDDB、AFW权威评测集上达到了可比较的精度,且能快速地进行检测.
推荐文章
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于BP神经网络的人脸检测AdaBoost算法
人脸检测
BP神经网络
AdaBoost
基于选择性搜索和卷积神经网络的人脸检测
卷积神经网络
选择性搜索
人脸检测
Gabor核
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于级联卷积神经网络的人脸检测算法
来源期刊 南京理工大学学报(自然科学版) 学科 工学
关键词 人脸检测 级联结构 神经网络 全卷积网络 无约束条件
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 40-47
页数 8页 分类号 TP391
字数 2603字 语种 中文
DOI 10.14177/j.cnki.32-1397n.2018.42.01.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李千目 南京理工大学计算机科学与工程学院 169 1365 19.0 28.0
2 李德强 南京理工大学计算机科学与工程学院 5 21 3.0 4.0
3 孙康 南京理工大学计算机科学与工程学院 5 36 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (3)
参考文献  (9)
节点文献
引证文献  (11)
同被引文献  (37)
二级引证文献  (3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(5)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(5)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(6)
  • 引证文献(4)
  • 二级引证文献(2)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸检测
级联结构
神经网络
全卷积网络
无约束条件
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京理工大学学报(自然科学版)
双月刊
1005-9830
32-1397/N
南京孝陵卫200号
chi
出版文献量(篇)
3510
总下载数(次)
7
总被引数(次)
33414
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导