原文服务方: 计算机应用研究       
摘要:
当年龄识别被看做分类问题时,基于卷积神经网络(CNN)的方法通常直接采用一般图像分类的CNN进行年龄识别,常常忽略了进行人脸年龄识别时需要考虑的误分类代价问题.基于上述观察,提出一种基于代价敏感卷积神经网络(CS-CNN)的人脸年龄估计方法.具体来讲,基于期望类最大原则(desired class maximum principle,DCMP)提出了一种能够使CNN学习到鲁棒人脸特征的代价敏感交叉熵损失函数(CS-CE),最后通过理论与实验的方法进行验证.相较之前的人脸年龄识别方法,该算法提升的效果是显著的.
推荐文章
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
基于卷积神经网络的人脸识别在开放机房的应用
卷积神经网络
人脸识别
开放机房
特征提取
反向传播
数据传输
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于代价敏感卷积神经网络的人脸年龄识别方法
来源期刊 计算机应用研究 学科
关键词 卷积神经网路 人脸年龄识别 误分类代价 代价敏感性 期望类最大原则
年,卷(期) 2020,(11) 所属期刊栏目 图形图像技术
研究方向 页码范围 3516-3520
页数 5页 分类号 TP391.41
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.06.0310
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐东明 57 191 6.0 10.0
2 马宣 2 0 0.0 0.0
3 任娅琼 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (5)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(11)
  • 参考文献(1)
  • 二级参考文献(10)
2016(13)
  • 参考文献(0)
  • 二级参考文献(13)
2017(14)
  • 参考文献(0)
  • 二级参考文献(14)
2018(7)
  • 参考文献(3)
  • 二级参考文献(4)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网路
人脸年龄识别
误分类代价
代价敏感性
期望类最大原则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导