原文服务方: 计算技术与自动化       
摘要:
针对卷积层存在的特征冗余问题,提出了一种基于卷积神经网络的特征图聚类方法.首先通过预训练网络参数提取网络最后一层卷积层的特征图,然后对特征图进行聚类操作,取聚类中心构成新的特征图集合,以聚类后的特征图集作为数据集训练分类器.将有监督的深度学习方法与传统的机器学习方法相结合,使用特征图聚类进行特征去冗余让网络学习到更有效的特征.去冗余后的特征使用神经网络分类器在fer2013测试集上达到了71.67%准确率,在CK+测试集上达到86.98%准确率,证明了该人脸表情识别方法的有效性.
推荐文章
类间学习神经网络的人脸表情识别
表情识别
类间学习
神经网络
类问期望
距离判据
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于DCT-BP神经网络的人脸表情识别
表情识别
离散余弦变换
误差向传播算法
前向神经网络
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络特征图聚类的人脸表情识别
来源期刊 计算技术与自动化 学科
关键词 卷积神经网络 特征冗余 特征图聚类 表情识别
年,卷(期) 2020,(1) 所属期刊栏目 图形图像技术
研究方向 页码范围 106-111
页数 6页 分类号 TP391.4
字数 语种 中文
DOI 10.16339/j.cnki.jsjsyzdh.202001022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘全明 山西大学计算机与信息技术学院 15 45 3.0 6.0
2 辛阳阳 山西大学计算机与信息技术学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (69)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(6)
  • 参考文献(4)
  • 二级参考文献(2)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
特征冗余
特征图聚类
表情识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
论文1v1指导