原文服务方: 微电子学与计算机       
摘要:
人脸聚类是利用未标记人脸数据的重要工具,在人脸标注和检索等方面有着广泛的应用.如何有效地聚类,特别是在大规模(如百万级或以上)数据集上,是一个悬而未决的问题. 最近的研究表明,基于图卷积神经网络(GCN)的聚类可以显著提高性能.然而这些方法需要生成大量的重叠子图,严重限制了模型的精度和效率.由于这些GCN算法没有分析过不同数据特征对模型的影响,通常仅在特定的数据集上表现出优异的性能.本文综合分析了距离、实例个数分布差异对模型的影响,提出了一种基于DBSCAN的图卷积网络模型.通过两段距离形成二次聚类模型,消除了DBSCAN对距离的依赖,提高了模型精度,在多个数据集中最高提升了20%;通过探索融合one-hot特征编码方式、多种邻接矩阵构图方法,进一步提升了模型的鲁棒性;通过邻接矩阵稀疏化算法解决了人群数量动态变化问题.在多个大型基准上的实验表明,相较于现有GCN算法,所提算法精度提高了2%~7%,并降低了对硬件的要求,提升了运行效率,可以应用于百万级的人脸聚类场景.
推荐文章
基于卷积神经网络特征图聚类的人脸表情识别
卷积神经网络
特征冗余
特征图聚类
表情识别
基于免疫聚类的神经网络集成的研究
神经网络集成
免疫聚类
分类
中医诊断
基于卷积神经网络特征图聚类的人脸表情识别
卷积神经网络
特征冗余
特征图聚类
表情识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图神经网络的百万数据人脸聚类
来源期刊 微电子学与计算机 学科
关键词 K近邻 图卷积神经网络 人脸聚类 邻接矩阵 稀疏矩阵
年,卷(期) 2022,(7) 所属期刊栏目 人工智能与算法
研究方向 页码范围 24-35
页数 11页 分类号 TP183
字数 语种 中文
DOI 10.19304/J.ISSN1000-7180.2022.0027
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K近邻
图卷积神经网络
人脸聚类
邻接矩阵
稀疏矩阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导