原文服务方: 中国机械工程       
摘要:
提出了一种设备健康预测和库存优化方法.使用自编码器提取监测信号特征,基于深度神经网络模型进行时序预测,构建设备健康度指标;采用统计分布判定和参数拟合的预测方法实现库存优化;最后,根据设备健康状态与备件数量实现生产主动预警.实例结果表明,该方法预测精度高于LSTM算法,可对设备故障进行精确预警,且备件库存优化模型的可靠性高达90.4%,可有效减少备件库存.
推荐文章
大数据在健康管理中的应用研究进展
大数据
健康管理
应用
基于影响因素分析和数据重构的备件需求预测
备件需求预测
数据重构
因素分析
灰色关联分析
支持向量回归
健康大数据在公共卫生领域中的应用与挑战
数据挖掘
公共卫生信息学
健康大数据
大数据平台在医药大健康行业中的应用研究
大数据
医药行业
医药服务
DSP平台
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 大数据在设备健康预测和备件补货中的应用
来源期刊 中国机械工程 学科
关键词 石油化工设备 设备健康监测 统计库存控制 大数据
年,卷(期) 2019,(2) 所属期刊栏目 智能设计与计划调度
研究方向 页码范围 183-187
页数 5页 分类号 TH17
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2019.02.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李嘉 华东理工大学商学院 24 129 5.0 10.0
2 张晨 1 2 1.0 1.0
3 王海宁 1 2 1.0 1.0
4 李思悦 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (83)
共引文献  (186)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (22)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(11)
  • 参考文献(3)
  • 二级参考文献(8)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
石油化工设备
设备健康监测
统计库存控制
大数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导