基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
时序数据存在时序性,并且其短序列的特征存在重要程度差异性.针对时序数据特征,提出一种基于注意力机制的卷积神经网络(CNN)联合长短期记忆网络(LSTM)的神经网络预测模型,融合粗细粒度特征实现准确的时间序列预测.该模型由两部分构成:基于注意力机制的CNN,在标准CNN网络上增加注意力分支,以抽取重要细粒度特征;后端为LSTM,由细粒度特征抽取潜藏时序规律的粗粒度特征.在真实的热电联产供热数据上的实验表明,该模型比差分整合移动平均自回归、支持向量回归、CNN以及LSTM模型的预测效果更好,对比目前企业将预定量作为预测量的方法,预测缩放误差平均值(MASE)与均方根误差(RMSE)指标分别提升了89.64%和61.73%.
推荐文章
基于注意力机制的LSTM的语义关系抽取
文本信息
语义关系
关系抽取
LSTM
注意力机制
基于CNN-LSTM的QAR数据特征提取与预测
深度学习
融合卷积神经网络
长短时记忆网络
特征提取
时间序列预测
基于深层注意力的LSTM的特定主题情感分析
特定主题情感分析
深层注意力
LSTM
深度学习
自然语言处理
基于多流CNN-LSTM网络的群体情绪识别
群体情绪识别
卷积神经网络
长短期记忆网络
多流
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于注意力机制的CNN-LSTM模型及其应用
来源期刊 计算机工程与应用 学科 工学
关键词 注意力机制 卷积神经网络(CNN) 长短期记忆网络(LSTM) 时间序列 负荷预测
年,卷(期) 2019,(13) 所属期刊栏目 热点与综述
研究方向 页码范围 20-27
页数 8页 分类号 TP391|TK01
字数 6854字 语种 中文
DOI 10.3778/j.issn.1002-8331.1901-0246
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (4)
同被引文献  (10)
二级引证文献  (0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
注意力机制
卷积神经网络(CNN)
长短期记忆网络(LSTM)
时间序列
负荷预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导