原文服务方: 微电子学与计算机       
摘要:
医学图像自动分割技术具有辅助临床医学诊断的功能.为改善CNN模型在医学图像分割中存在感受野小及细节特征不敏感等问题,基于多尺度策略以及注意力机制,提出一种多尺度综合注意力的U形网络架构,以提升医学图像分割质量.首先,提出一个新的双路径因式分解多尺度融合块,以扩展图像特征的感受野,进一步提取图像特征的细节信息.其次,在架构中融入通道和空间融合自注意力块,利用注意力机制的特性,抑制不相关的部分或背景以突显深层特征的空间信息.最后,引入多尺度注意力块.该模块通过融合多个尺度的特征信息,以突出不同尺度中最显著的特征图来适应当前分割对象的大小.为验证模型的可靠性,将所提出的网络模型应用于肺部、细胞轮廓及肝脏等医学图像分割任务.实验结果表明,所提方法在准确率、Dice系数、AUC及灵敏度等评估指标上均优于目前用于医学图像分割的主流方法。
推荐文章
基于残差双注意力U-Net模型的 CT图像囊肿肾脏自动分割
CT图像
囊肿肾脏分割
深度网络分割模型
注意力机制
多尺度监督U-Net甲状腺结节超声图像分割
图像分割
深度学习
注意力机制
神经网络
U 型网络
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
融入视觉常识和注意力的图像描述
图像描述
注意力机制
视觉常识
注意偏差
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 MCA-Net:多尺度综合注意力CNN在医学图像分割中的应用
来源期刊 微电子学与计算机 学科 工学
关键词 医学图像分割 因式分解 双路径融合块 通道注意力 空间注意力 多尺度注意力块
年,卷(期) 2022,(3) 所属期刊栏目 计算机工程与应用
研究方向 页码范围 71-77
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.19304/J.ISSN1000-7180.2021.0950
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
医学图像分割
因式分解
双路径融合块
通道注意力
空间注意力
多尺度注意力块
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
论文1v1指导