基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用神经网络能通过进行建筑像素标记实现航空图像分割,但也存在分割边界模糊的问题,导致分割结果不理想.为此,本文以卷积神经网络U-net和FCN-8s基本网络模型,实现端到端训练.在此基础上,结合建立了全卷积神经网络结合多尺度特征和注意力机制的网络模型,提升了分割边界的清晰度.将多尺度特征和注意力机制的模型与基本模型进行对比,分析了真实与预测之间的相关度和相似度,并将预测结果进行对比.实验结果表明,结合多尺度特征和注意力机制的分割模型,分割边界更清晰,相对于相同训练规模的全卷积网络交并比高2%,Dice系数高3%,得到较好的分割结果.
推荐文章
MCA-Net:多尺度综合注意力CNN在医学图像分割中的应用
医学图像分割
因式分解
双路径融合块
通道注意力
空间注意力
多尺度注意力块
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
基于多尺度融合注意力机制的人脸表情识别研究
计算机视觉
深度学习
人脸表情识别
特征提取
多尺度特征融合
注意力机制
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度特征和注意力机制的航空图像分割
来源期刊 控制理论与应用 学科
关键词 航空图像分割 建筑像素标记 全卷积神经网络 注意力机制 多尺度特征
年,卷(期) 2020,(6) 所属期刊栏目 论文与报告
研究方向 页码范围 1218-1224
页数 7页 分类号
字数 6143字 语种 中文
DOI 10.7641/CTA.2019.90133
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宁芊 四川大学电子信息学院 60 414 10.0 18.0
3 雷印杰 四川大学电子信息学院 34 120 6.0 9.0
4 陈炳才 大连理工大学计算机科学与技术学院 10 74 2.0 8.0
10 胡诗雨 四川大学电子信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
航空图像分割
建筑像素标记
全卷积神经网络
注意力机制
多尺度特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
广州市五山华南理工大学内
46-11
1984
chi
出版文献量(篇)
4979
总下载数(次)
16
总被引数(次)
72515
论文1v1指导