原文服务方: 西安交通大学学报       
摘要:
针对旋转机械故障诊断需要复杂特征提取过程,且对混有噪声的信号故障识别准确率偏低的问题,提出了一种基于注意力机制的多尺度端到端故障诊断方法.该方法在输入端引入随机丢弃抑制输入噪声,然后利用故障信号具有多个固有振动模态的特点,通过多尺度粗粒度层获取不同尺度下振动信号,进而利用全卷积网络实现多尺度特征提取,接着采用注意力机制将多尺度特征进行融合,最后利用多分类函数实现旋转机械故障诊断.分别在凯斯西储大学轴承数据集和变速箱数据集对该方法的有效性进行验证,结果表明:该方法的故障识别率高达100%;人为引入噪声信号的信噪比为-4 dB时,在凯斯西储大学轴承数据集F上的故障识别正确率为84.77%,在齿轮箱数据集上的识别正确率为78.365%,识别正确率明显高于其他机器学习算法,证明了该方法具有较强的抗噪声干扰能力.
推荐文章
证据理论在旋转机械故障诊断中应用
多传感器
D-S证据理论
信息融合
故障诊断
基于MCKD和包络谱的旋转机械故障诊断方法
旋转机械故障诊断
最大相关峭度解卷积
包络谱
最小熵解卷积
神经网络在旋转机械故障诊断中的应用
神经网络
故障诊断
BP网络
基于LabVIEW和BP神经网络的旋转机械故障诊断研究
旋转机械
LabVIEW
BP神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用多尺度注意力机制的旋转机械故障诊断方法
来源期刊 西安交通大学学报 学科
关键词 旋转机械 故障诊断 随机丢弃 多尺度特征提取 注意力机制
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 51-58
页数 8页 分类号 TH133.33|TP18
字数 语种 中文
DOI 10.7652/xjtuxb202002007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘建华 中国矿业大学徐海学院 95 735 15.0 23.0
2 吴静然 中国矿业大学徐海学院 18 33 4.0 5.0
3 崔冉 中国矿业大学徐海学院 18 26 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (11)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(12)
  • 参考文献(1)
  • 二级参考文献(11)
2017(8)
  • 参考文献(4)
  • 二级参考文献(4)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
旋转机械
故障诊断
随机丢弃
多尺度特征提取
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
论文1v1指导