原文服务方: 科技与创新       
摘要:
为了解决因缺少大量故障数据样本而制约机械故障智能诊断发展的问题,提出了一种基于支持向量机的故障诊断模型.该模型建立在VC维理论和结构风险最小原理基础上,根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷.在选取诊断模型输入向量时,对故障信号功率谱进行小波分解,简化了故障特征向量的提取.仿真结果表明该模型可以有效地对旋转机械设备故障进行诊断.
推荐文章
基于支持向量机的机械故障诊断方法研究
支持向量机
机械故障诊断
多故障分类器
基于LabVIEW和BP神经网络的旋转机械故障诊断研究
旋转机械
LabVIEW
BP神经网络
故障诊断
基于神经网络的旋转机械故障诊断研究
故障诊断
神经网络
旋转机械
智能诊断
感知器
证据理论在旋转机械故障诊断中应用
多传感器
D-S证据理论
信息融合
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的旋转机械故障诊断研究
来源期刊 科技与创新 学科
关键词 小波包分析 故障诊断 支持向量机 核函数
年,卷(期) 2006,(34) 所属期刊栏目 故障诊断
研究方向 页码范围 184-185,199
页数 3页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1008-0570.2006.34.069
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (69)
参考文献  (4)
节点文献
引证文献  (5)
同被引文献  (5)
二级引证文献  (13)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(4)
  • 引证文献(4)
  • 二级引证文献(0)
2009(3)
  • 引证文献(0)
  • 二级引证文献(3)
2010(1)
  • 引证文献(0)
  • 二级引证文献(1)
2011(3)
  • 引证文献(0)
  • 二级引证文献(3)
2012(4)
  • 引证文献(0)
  • 二级引证文献(4)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波包分析
故障诊断
支持向量机
核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技与创新
半月刊
2095-6835
14-1369/N
大16开
2014-01-01
chi
出版文献量(篇)
41653
总下载数(次)
0
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导