基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对标签特有特征和标签相关性的有效利用,提出了一种新的多标签算法LSFLC,它可以有效地集成标签特有特征和标签相关性.首先,对于每个标签,通过重采样技术生成新的正类实例以扩充其正类实例的数目;其次,通过特征映射函数将原始特征空间转换为特定的特征空间,得到每个标签的标签特征集;然后,对于每个标签,找到与其最相关标签,通过复制该标签的正类实例来扩大标签特征集,这不仅丰富了标签的信息,而且在一定程度上改善了类不平衡的问题;最后,对于不同的数据集进行实验分析,实验结果表明该算法的分类效果更好.
推荐文章
基于标签相关性的类属属性多标签分类算法
标签相关性
类属属性
多标签学习
标签相关的多标签分类算法
离散化
贝叶斯网
朴素贝叶斯分类器
多标签学习
一种基于标签相关性的多标签分类算法
多标签
标签相关性
kNN
二阶
基于标签相似度的不良信息多标签分类方法
多标签分类
标签之间的相关关系
不良信息
中心标签
标签相似度系数矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于标签特征和相关性的多标签分类算法
来源期刊 计算机工程与应用 学科 工学
关键词 多标签学习 局部标签相关性 标签特有特征 相关实例补充
年,卷(期) 2019,(4) 所属期刊栏目 热点与综述
研究方向 页码范围 48-55
页数 8页 分类号 TP391
字数 7334字 语种 中文
DOI 10.3778/j.issn.1002-8331.1811-0325
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨有龙 西安电子科技大学数学与统计学院 44 147 7.0 10.0
2 李锋 西安电子科技大学数学与统计学院 5 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (5)
参考文献  (18)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (0)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(13)
  • 参考文献(3)
  • 二级参考文献(10)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多标签学习
局部标签相关性
标签特有特征
相关实例补充
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导