基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
BACKGROUND Automated, accurate, objective, and quantitative medical image segmentation has remained a challenging goal in computer science since its inception. This study applies the technique of convolutional neural networks (CNNs) to the task of segmenting carotid arteries to aid in the assessment of pathology.AIM To investigate CNN’s utility as an ancillary tool for researchers who require accurate segmentation of carotid vessels.METHODS An expert reader delineated vessel wall boundaries on 4422 axial T2-weighted magnetic resonance images of bilateral carotid arteries from 189 subjects with clinically evident atherosclerotic disease. A portion of this dataset was used to train two CNNs (one to segment the vessel lumen and the other to segment the vessel wall) with the remaining portion used to test the algorithm’s efficacy by comparing CNN segmented images with those of an expert reader.RESULTS Overall quantitative assessment between automated and manual segmentations was determined by computing the DICE coefficient for each pair of segmented images in the test dataset for each CNN applied. The average DICE coefficient for the test dataset (CNN segmentations compared to expert’s segmentations) was0.96 for the lumen and 0.87 for the vessel wall. Pearson correlation values and the intra-class correlation coefficient (ICC) were computed for the lumen (Pearson=0.98, ICC=0.98) and vessel wall (Pearson=0.88, ICC=0.86) segmentations.Bland-Altman plots of area measurements for the CNN and expert readers indicate good agreement with a mean bias of 1%-8%.CONCLUSION Although the technique produces reasonable results that are on par with expert human assessments, our application requires human supervision and monitoringto ensure consistent results. We intend to deploy this algorithm as part of a software platform to lessen researchers’ workload to more quickly obtain reliable results.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
基于Overlay Networks的区分服务模型
重叠网
服务质量
区分服务
接纳控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Segmentation of carotid arterial walls using neural networks
来源期刊 世界放射学杂志:英文版(电子版) 学科 工学
关键词 CAROTID ARTERIES SEGMENTATION Convolutional neural network Magnetic resonance imaging VESSEL wall
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 1-9
页数 9页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CAROTID
ARTERIES
SEGMENTATION
Convolutional
neural
network
Magnetic
resonance
imaging
VESSEL
wall
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
世界放射学杂志:英文版(电子版)
月刊
1949-8470
北京市朝阳区东四环中路62号楼远洋国际中
出版文献量(篇)
785
总下载数(次)
1
总被引数(次)
0
论文1v1指导