基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
<span style="font-family:Verdana;">Transportation of freight and passengers by train is one of the oldest types of transport, and has now taken root in most of the developing countries especially in Africa. Recently, with the advent and development of high-speed trains, continuous monitoring of the railway vehicle suspension is of significant importance. For this reason, railway vehicles should be monitored continuously to avoid catastrophic events, ensure comfort, safety, and also improved performance while reducing life cycle costs. The suspension system is a very important part of the railway vehicle which supports the car-body and the bogie, isolates the forces generated by the track unevenness at the wheels and also controls the attitude of the car-body with respect to the track surface for ride comfort. Its reliability is directly related to the vehicle safety. The railway vehicle suspension often develops faults;worn springs and dampers in the primary and secondary suspension. To avoid a complete system failure, early detection of fault in the suspension of trains is of high importance. The main contribution of the research work is the prediction of faulty regimes of a</span> <span style="font-family:Verdana;">railway vehicle suspension based on a hybrid model. The hybrid model</span><span style="font-family:Verdana;"> framework is in four folds;first, modeling of vehicle suspension system to generate vertical acceleration of the railway vehicle, parameter estimation or identification was performed to obtain the nominal parameter values of the vehicle suspension system based on the measured data in the second fold, furthermore, a supervised machine learning model was built to predict faulty and healthy state of the suspension system components (damage scenarios) based on support vector machine (SVM) and lastly, the development of a new SVM model with the damage scenarios to predict faults on the test data. The level of degradation at which the spring and damper becomes faulty for both pri</span><span style
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于PC-Based的TwinCAT数据接口研究
PC-Bases
TwinCAT 接口
数据传输
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Fusion of Model-Based and Data Driven Based Fault Diagnostic Methods for Railway Vehicle Suspension
来源期刊 智能学习系统与应用(英文) 学科 工学
关键词 Railway Vehicle Suspension System Hybird Model Fault Detection Support Vector Machine
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 51-81
页数 31页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Railway
Vehicle
Suspension
System
Hybird
Model
Fault
Detection
Support
Vector
Machine
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导