基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The effects of gravity,capillary force,and viscous force on the migration characteristics of oil and gas interface in oxygen-reduced air-assisted gravity drainage(OAGD)were studied through a two-dimensional visualization model.The effects of bond number,capillary number and low-temperature oxidation on OAGD recovery were studied by long core displacement experiments.On this basis,the low-temperature oxidation number was introduced and its relationship with the OAGD recovery was established.The results show that the shape and changing law of oil and gas front are mainly influenced by gravity,capillary force and viscous force.When the bond number is constant(4.52×10-4),the shape of oil-gas front is controlled by capillary number.When the capillary number is less than 1.68×10-3,the oil and gas interface is stable.When the capillary number is greater than 2.69×10-2,the oil and gas interface shows viscous fingering.When the capillary number is between 1.68×10-3 and 2.69×10-2,the oil and gas interface becomes capillary fingering.The core flooding experiments results show that for OAGD stable flooding,before the gas breakthrough,higher recovery is obtained in higher gravity number and lower capillary number.In this stage,gravity is predominant in controlling OAGD recovery and the oil recovery could be improved by reducing injection velocity.After gas breakthrough,higher recovery was obtained in lower gravity and higher capillary numbers,which means that the viscous force had a significant influence on the recovery.Increasing gas injection velocity in this stage is an effective measure to improve oil recovery.The low-temperature oxidation number has a good correlation with the recovery and can be used to predict the OAGD recovery.
推荐文章
The hydrogen and oxygen isotopic compositions of hydroxyl in clay mineral from a weathering profile:
Weathering profile
Hydrogen and oxygen isotopes
Hydroxyl
Kaolinite
An experimental study on metal precipitation driven by fluid mixing: implications for genesis of car
Metal precipitation
Fluid mixing
Sulfur species
MVT lead–zinc ore deposits
Carbonate-hosted
lead–zinc deposits
High oxygen fugacity magma: implication for the destruction of the North China Craton
High oxygen fugacity
Decratonization
North China Craton
Plate subduction
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Experimental investigation on stable displacement mechanism and oil recovery enhancement of oxygen-reduced air assisted gravity drainage
来源期刊 石油勘探与开发:英文版 学科 工学
关键词 oxygen-reduced air drainage gravity drainage experiment oil displacement mechanism recovery influence factor
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 836-845
页数 10页 分类号 TE357
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
oxygen-reduced
air
drainage
gravity
drainage
experiment
oil
displacement
mechanism
recovery
influence
factor
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
石油勘探与开发:英文版
双月刊
2096-4803
10-1529/TE
北京市海淀区学院路20号
80-232
出版文献量(篇)
331
总下载数(次)
0
总被引数(次)
0
论文1v1指导