基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the scenery of the oil industry, the remaining resources associated with light oils have an increasingly smaller share in the natural energy resources available to man, and in return the importance of resources associated with heavy oils has increased significantly. One of the drawbacks of this type of oil is associated with its low mobility due to the high viscosity in reservoir conditions, making the transport in pipelines very difficult, especially through pumping methods that require high powers. Thus, the development of new techniques and optimization of some existing technologies, aiming at the commercial use of heavy oil accumulations plays an important role. A viable technique that has been </span><span "="" style="line-height:1.5;">used is the core annular flow, in which small amounts of water are injected close to the pipe wall, lubricating the oil core, reducing friction and decreasing the pressure drop during the flow. In this sense, this work aims to perform, numerically, an energetic and hydrodynamic analysis of a heavy oil-water two-phase flow, using the core-flow technique, in curved pipes, in the Ansys CFX software. Results of the velocity, pressure, and volume fraction distribution of the involved phases are presented and analyzed. It was observed that the proposed mathematical model was able to accurately represent the analyzed phenomena and that a reduction factor in the pressure drop of 28.4 was obtained as compared to the heavy oil single-phase flow.
推荐文章
Influence on lacustrine source rock by hydrothermal fluid: a case study of the Chang 7 oil shale, so
Hydrothermal fluid activity
Lacustrine source rock
Element geochemistry
Chang 7
Ordos Basin
A preliminary study on ore-forming environments of Xianglushan-type iron deposit and the weathering
Emeishan basalt paleo-weathering crust
Xianglushan-type iron deposit
Ore-forming environment
Weathering mineralization
Western Guizhou Province
Distribution and ecological risks of heavy metals in Lake Hussain Sagar, India
Trace metals
Lake sediment
Geochemistry
Speciation
Industrial effluents
Idol immersion
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Isothermal Transport (Core-Flow Type) of Heavy and Ultraviscous Oil in Curved Pipes: A Transient Study by CFD
来源期刊 流体动力学(英文) 学科 物理学
关键词 Core-Flow Simulation Two-Phase Flow CFD Ansys CFX
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 122-134
页数 13页 分类号 O35
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Core-Flow
Simulation
Two-Phase
Flow
CFD
Ansys
CFX
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
流体动力学(英文)
季刊
2165-3852
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
302
总下载数(次)
0
总被引数(次)
0
论文1v1指导