随着网络技术的迅速发展和新型应用的不断出现,网络数据的急剧增加导致网络管理变得极其复杂.传统网络中的设备多种多样,配置复杂,难于管理,而软件定义网络(software defined networking,SDN)这种新型网络架构的出现给网络管理带来了曙光,该架构摆脱了硬件设备对网络的限制,使网络具有灵活、可编程性等优点.一个好的路由机制影响着整个网络的性能,软件定义网络的集中控制特性给机器学习在路由机制方面的应用带来了新的研究方向.首先论述了SDN路由优化的现状,然后从监督学习和强化学习2个方面概述了近年来机器学习在SDN路由方面的研究,最后为了满足不同应用的服务质量(quality of service,QoS)以及不同用户的体验质量(quality of experience,QoE),提出了数据驱动认知路由的发展趋势.通过赋予网络节点感知、记忆、查找、决策、推理、解释等认知行为,加快寻路过程,优化路由选择,完善网络管理.