基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose:The main aim of this study is to build a robust novel approach that is able to detect outliers in the datasets accurately.To serve this purpose,a novel approach is introduced to determine the likelihood of an object to be extremely different from the general behavior of the entire dataset.Design/methodology/approach:This paper proposes a novel two-level approach based on the integration of bagging and voting techniques for anomaly detection problems.The proposed approach,named Bagged and Voted Local Outlier Detection(BV-LOF),benefits from the Local Outlier Factor(LOF)as the base algorithm and improves its detection rate by using ensemble methods.Findings:Several experiments have been performed on ten benchmark outlier detection datasets to demonstrate the effectiveness of the BV-LOF method.According to the results,the BV-LOF approach significantly outperformed LOF on 9 datasets of 10 ones on average.Research limitations:In the BV-LOF approach,the base algorithm is applied to each subset data multiple times with different neighborhood sizes(k)in each case and with different ensemble sizes(T).In our study,we have chosen k and T value ranges as[1-100];however,these ranges can be changed according to the dataset handled and to the problem addressed.Practical implications:The proposed method can be applied to the datasets from different domains(i.e.health,finance,manufacturing,etc.)without requiring any prior information.Since the BV-LOF method includes two-level ensemble operations,it may lead to more computational time than single-level ensemble methods;however,this drawback can be overcome by parallelization and by using a proper data structure such as R*-tree or KD-tree.Originality/value:The proposed approach(BV-LOF)investigates multiple neighborhood sizes(k),which provides findings of instances with different local densities,and in this way,it provides more likelihood of outlier detection that LOF may neglect.It also brings many benefits such as easy implementation,improved capability,higher applicability
推荐文章
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
集成分类对比:Bagging NB & Boosting NB
分类算法
Bagging
Boosting
朴素贝叶斯
基于属性权重的Bagging回归算法研究
支持向量机
属性权重
集成学习
主成份分析
回归算法
基于Bagging-PNN算法的树叶分类方法优化
树叶分类
Bagging
概率神经网络
形状特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Two-Level Approach based on Integration of Bagging and Voting for Outlier Detection
来源期刊 数据与情报科学学报:英文版 学科 工学
关键词 Outlier detection Local outlier factor Ensemble learning BAGGING VOTING
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 111-135
页数 25页 分类号 TP311.13
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Outlier
detection
Local
outlier
factor
Ensemble
learning
BAGGING
VOTING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
论文1v1指导