基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Predicting tourism traffic demand accurately plays an important role in making effective policies for tourist administration. It helps to distribute the resources reasonably and avoid the tourism congestions. This paper considered the noise interference and proposed a hybrid model, combining ensemble empirical mode decomposition (EEMD), deep belief network (DBN) and Google trends, for tourism traffic demand prediction. This model firstly applied dislocation weighted synthesis method to combine Google trends into a search composite index, and then it denoised the series with EEMD. EEMD extracted the high frequency noise from the original series. The low frequency series of search composite index would be used to forecast the low frequency tourism traffic series. Taking the inbound tourism in Shanghai as an example, this paper trained the model and predicted the next 12 months tourism arrivals. The conclusion demonstrated that the forecast error of EEMD-DBN model is lower remarkably than the baselines of ARIMA, GM(1,1), FTS, SVM, CES and DBN model. This revealed that nosing processing is necessary and EEMD-DBN forecast model can improve the prediction accuracy.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
批量正则化DBN分类方法研究
深度置信网络
分类
无监督学习
尺度变换
平移变换
批量正则化
基于狼群算法的DBN网络结构确定方法研究
深度信念网络
狼群算法
重构误差
聚类测试
基于VMD和DBN的结构健康状态趋势预测
变分模态分解
深度置信网络
结构健康预测
动量学习率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Tourism Traffic Demand Prediction Using Google Trends Based on EEMD-DBN
来源期刊 工程(英文)(1947-3931) 学科 经济
关键词 TOURISM Traffic Demand Forecasting DEEP Learning GOOGLE TRENDS Composite Search Index Ensemble Empirical Mode Decomposition (EEMD) DEEP BELIEF Network (DBN)
年,卷(期) gc-eng_2020,(3) 所属期刊栏目
研究方向 页码范围 194-215
页数 22页 分类号 F59
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TOURISM
Traffic
Demand
Forecasting
DEEP
Learning
GOOGLE
TRENDS
Composite
Search
Index
Ensemble
Empirical
Mode
Decomposition
(EEMD)
DEEP
BELIEF
Network
(DBN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程(英文)(1947-3931)
月刊
1947-3931
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
367
总下载数(次)
1
论文1v1指导