<p align="justify"> <span style="font-family:Verdana;">Physical concepts based on the Clausius-Clapeyron relation and on the thermodynamics and aerosol characteristics associated with updrafts, global climate models assuming different parametrizations and lightning-related output variables, and lightning-related data (thunderstorm days) are being used to infer the lightning incidence in a warmer planet, motivated by the global warming observed. In all cases, there are many gaps to be overcome making the lightning response to the global temperature increase still unpredicted. Values from almost 0% (no increase) to 100% have been estimated, being 10% the most common value. While the physical concepts address only part of the problem and the global climate models need to make many simple assumptions, lightning-relate data have strong time and space limitations. In this context, any new evidence should be considered as an important contribution to better understand how will be the lightning incidence in the future. In this article</span></span></span></a><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:'Minion Pro Capt','serif';"><span style="font-family:Verdana;"> we described new results about the occurrence of thunderstorms from 1850 to 2010 (a period of 160 years) in the city of Rio de Janeiro, in the Southeast of Brazil. During this period thunderstorm days were recorded in the same location, making this time series one of the longest series of this type available worldwide. The data support an increase of 21% in the mean annual thunderstorm days during the period, while surface temperature i</span><span><span style="font-family:Verdana;">ncreased by 0.6</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font