基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The learning-based super-resolution reconstruction method inputs a low-resolution image into a network,and learns a non-linear mapping relationship between low-resolution and high-resolution through the network.In this study,the multi-scale super-resolution reconstruction network is used to fuse the effective features of different scale images,and the non-linear mapping between low resolution and high resolution is studied from coarse to fine to realise the end-to-end super-resolution reconstruction task.The loss of some features of the low-resolution image will negatively affect the quality of the reconstructed image.To solve the problem of incomplete image features in low-resolution,this study adopts the multi-scale super-resolution reconstruction method based on guided image filtering.The high-resolution image reconstructed by the multi-scale super-resolution network and the real high-resolution image are merged by the guide image filter to generate a new image,and the newly generated image is used for secondary training of the multi-scale super-resolution reconstruction network.The newly generated image effectively compensates for the details and texture information lost in the low-resolution image,thereby improving the effect of the super-resolution reconstructed image.Compared with the existing super-resolution reconstruction scheme,the accuracy and speed of super-resolution reconstruction are improved.
推荐文章
多路平衡型矩阵Bloom Filter
海量数据存储
BloomFilter
拆分BloomFilter
多路平衡型矩阵BloomFilter
基于Bloom Filter的去重方法研究
信息超载
个性化推荐系统
Bloom Filter
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
一种基于Guided Filter的联合红外热图像增强算法
动态范围压缩
细节增强
guided Filter
AGC
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Guided filter-based multi-scale super-resolution reconstruction
来源期刊 智能技术学报 学科 工学
关键词 RESOLUTION IMAGE NETWORK
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 128-140
页数 13页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RESOLUTION
IMAGE
NETWORK
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
总被引数(次)
0
论文1v1指导